IRIT at e-Risk

نویسندگان

  • Idriss Abdou Malam
  • Mohamed Arziki
  • Mohammed Nezar Bellazrak
  • Farah Benamara
  • Assafa El Kaidi
  • Bouchra Es-Saghir
  • Zhaolong He
  • Mouad Housni
  • Véronique Moriceau
  • Josiane Mothe
  • Faneva Ramiandrisoa
چکیده

In this paper, we present the method we developed when participating to the e-Risk pilot task. We use machine learning in order to solve the problem of early detection of depressive users in social media relying on various features that we detail in this paper. We submitted 4 models which differences are also detailed in this paper. Best results were obtained when using a combination of lexical and statistical features.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

IRIT @ TRECVid HLF 2009 Audio to the Rescue

This notebook paper describes the six runs submitted for the first participation of IRIT at TRECVid 2009 High-Level Feature Extraction task. They were submitted in an attempt to start answering two research questions: 1. Can acoustic information be of any help in this (historically) video-only task? 2. Are Support Vector Machines robust enough to deal with noisy and unbalanced datasets? The six...

متن کامل

IRIT at CLEF 2004: The English GIRT Task

This paper describes our participation to the monolingual English GIRT task. The main objectives of our experiments were to evaluate the use of Mercure IRS (designed at IRIT/SIG) on domain specific corpus. Two other techniques of automatic query reformulation using WordNet are evaluated.

متن کامل

IRIT at TREC Microblog 2011

This paper describes the participation of the IRIT lab, university of Toulouse, France, to the Microblog Track of TREC 2011. Two different approaches were experimented by our team, which are described in the two main parts of the paper.

متن کامل

IRIT @ TRECVid 2010 : Hidden Markov Models for Context-aware Late Fusion of Multiple Audio Classifiers

This notebook paper describes the four runs submitted by IRIT at TRECVid 2010 Semantic Indexing task. The four submitted runs can be described and compared as follows: • Run 4 – late fusion (weighted sum) of multiple audio-only classifiers output • Run 3 – context-aware re-rank of run 4 using hidden Markov model • Run 2 – context-aware late fusion of multiple audio classifiers output with hidde...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017